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ABSTRACT

Theoretical studies using the
da
— = k(T (@)
dt

rate equation for heterogeneous processes — especially those involving at least one solid
reactant — are reported. Dependence of k on the sample size is shown in general. Possible
rate expressions for reversible systems are discussed.

New forms analogous to physical fluxes and current densities are presented for the
kinetic description of the chemical step of the processes concerned.

INTRODUCTION

In practical kinetic investigations of processes involving at least one reac-
tant in the solid state the usual general rate equation is based on the reacted
fraction («) of the sample

da .
= 1
5 R(T) () (1)

where f denotes a function, ¢t and %k are the time and the rate coefficient (rate
constant) which is supposed to be a function of the absolute temperature
(T). Equation (1) is applied almost exclusively to the decomposition of
solids being studied most frequently by means of thermal analysis methods.
In the following, eqn. (1) will be discussed and a new, more general rate
equation will be presented for the chemical step of heterogeneous processes.
The basis of this concept was published by the authors as a conclusion of a
thermal analysis study on alkaline-earth carbonates [1]. The concrete results
of that study [1—3] will not be detailed here, although some characteristics

of carbonate decompositions are mentioned to illustrate general considera-
tions.

THE USE OF THE REACTED FRACTION IN THE RATE EQUATION

Equation (1) resembles the rate law of homogeneous reactions, containing
the reacted fraction instead of concentrations. Reviews and monographs in
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this field often contain warnings about the limitations of this analogy [4—38],
pointing out that in reactions of solids the f(«) functions express rather the
effect of geometry and transport processes (heat conduction, diffusion) than
the effect of concentrations. In fact, the concentration itself can be different
in various parts of the system, moreover, its change is not continuous at a
certain place, if reactants and products form separate phases. Thus, the
reacted fraction is an average value for the whole system, which can be very
easily calculated from measurable quantities (mass of the sample, evolved or
consumed energy). but its relation to local quantities (like concentration) is
not simple. Naturally, anv quantity having an unambiguous (more practi-
cally, linear) relationship with the amount of reactants and products may be
used in rate equations. but this may change the characteristics and the mean-
ing of the other variables which in egn. (1) are summarized in the rate coeffi-
cient k. For example, one could use eqn. (1) to describe a homogeneous
reaction having the

_de kAT (2)

dt

rate law, where ¢ is the concentration of the reactant with the value ¢, at the
beginning of the process and zero at the end, and n is the reaction order.
Even in the case of constant volume the rate coefficient in eqn. (1) would
become a function of two independent variables. except n =1

k=l (T)en 1 (3)

after repiacing ¢ with ¢o(1 — «).

THE EFFECT OF THE SAMPLE SIZE AND THE REVERSE REACTION ON KINETIC
PARAMETERS CALCULATED FROM EQN. (1)

While for homogeneous reactions a law similar to eqn. (2) describes the
reaction rate, i.e. the time derivative of the amount of material transformed
in the unity of volume, regardless of the entire volume of the system,
provided the temperature, the initial concentrations and other intensive
quantities are the same, eqn. (1) does not have this invariancy in general if
applied to a process with a solid reactant, when the chemical change is going
on at a phase boundary of changing configuration and/or size. On this basis,
in theoretical considerations starting from some Kkind of physical model for
the mechanism of the process, the rate equations usually contain the number
of particles or sites capable of reaction or this number related to the unity of
surface [9—11].

However, once turning to expressions applicable in the calculation of
kinetic parameters from measurements, « is introduced without real discus-
sion. Other works simply start with eqn. (1) or equivalent [12,13], or use
rate equations based on a and the amount of the reactant within one chapter
[14].

Although most of the authors cited above do mention that the reaction
rate in a heterogeneous process depends on a series of variables beyond those
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included explicitly in eqn. (1). none of them point out that the rate coeffi-
cient will be dependent upon the size of the sample in all but one case. :\s the
most simple example one can take an irreversible decomposition of a solid
where the velocity of the advancement of the reacting surface can be
assumed to depend on the temperature only. Expressing f(a) in this case for
spherical samples yvields

Ao 1 — o (1)
d¢

Comparing two spheres of different initial radii the rate constant must ob-
viously be inversely proportional to the initial radius.

If the reaction takes place on the changing surface of the solid reactant,
the only type of system whose k in eqn. (1) will be independent of sample
size, consists of identical particles and involves a process advancing uni-
formly in each particle (i.e. at any time the reacted fraction of all the par-
ticles is the same). This case is quite rare, even powder samples most often
behaving similarly to a single piece: there is a reaction zone moving inward. as
shown for calcium carbonate by Gallagher and Johnson [15] and our
previous work [1].

Using the Arrhenius equation for the rate constant

AHY )
RT

where -1 and AH* are the pre-exponential factor and the activation enthalpy,
respectively, the particular effect of the sample size discussed above will
appear in the .1 value. Within one study this problem can remain concealed,
since most investigators tend to use similar samples in one series of mea-
surements as possible. However, it is certainly one of the causes making the
comparison of results from different laboratories difficult and questionable.

A more careful way of kinetic investigation was suggested by Ozawa [16].
He asserted that the rate should be expressed basically in terms of a “‘struc-
tural quantity”, x. Assuming the rate constant given by the Arrhenius rela-
tion, he wrote similarly to eqn. (1)

l=A exp (— (3)

dx AH®

a e [ g o (6)
Here he emphasised that the conversion (being the same as «) calculated

from some property of the sample is not necessarily equal to x, rather, in

general

a = f(x)

and that the f(x) function has to be taken into account in practical computa-
tions. As an example he showed the actual f(x) for polymer degradation and
evaporation with random scission of bonds between the monomer units.
However, the structural quantity on Ozawa’s work still has characteristics
of the reacted fraction (it changes from 1 to 0) that may well be satisfactory
in the case of some polymer degradations, but would show the same size
effects in heterogeneous chemical reactions as eqn. (1).
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It must be emphasized that the size has other, often greater effects on the
rate of the overall process, influencing the conditions of the transport
processes in the system, as discussed in detail most recently by Garn [8].

Whenever the reverse reaction can take place in a process, the overall rate
will depend on the concentrations of the products, which in the decompo-
sition of solids can be characterized by the partial pressure of the evolved
gas. Bradley [17], starting from an assumption of Polanyi and Wigner [18],
using the terms of the transition state theory, derived a factor to be included
in the rate equation for a solid—solid process, which can also complete eqn.
(1)

AG
dt = R(T)f(a) (1 —exp 7.7) (1)
where AG is the Gibbs free energy difference in the process. Although
(7) had been suggested for general use in the evaluation of thermoanalytical
curves by Sestdk and Berggren [5] and Satava [12], it has been usually
ignored, assuming the process to be “‘very far” from equilibrium. One of the
few exceptions is Jiintgen and Van Heek’s work on calcium carbonate
decomposition [19]. In this case the driving force factor equals (1 —p/p.), p
and p. being the actual and the equilibrium pressure of the product gas.

Rouquerol [13] and Wist 20] without detailed discussion introduced the
difference of the equilibrium and the actual pressure as a factor into the
right-hand side of egn. (1). Their factor differs from that mentioned above
[19] in a p. multiplier which is temperature dependent.

Before proceeding to the suggested new form of rate equation, let us
briefly mention another way of taking the sample size and product gas pres-
sure into account. It is possible to use eqn. (1) in the investigation calculat-
ing the apparent values of kinetic parameters (A4, E and the f function) and
study the dependence of these parameters on sample size and the pressure as
suggested by several authors [4—8]. In a quite detailed study on calcium car-
bonate thermal decomposition Gallagher and Johnson [15] followed this
way, describing the relationship of the initial mass of sample and the
Arrhenius parameters with empirical formulae and characterizing the effect
of carbon dioxide pressure on the apparent activation enthalpy. Several years
before, Berlin and Robinson [21] derived an expression of the relationship
between the initial mass and the temperature at which the reaction just ter-
minates in constant heating rate runs.

In spite of the considerations and promising suggestions mentioned above,
eqn. (1) is being applied almost exclusively in the kinetic evaluation of ther-
moanalytical curves.

DISCUSSION OF THE PROPOSED NEW FORM OF RATE EQUATION

When attempting to give a more general expression of the rate of heterog-
eneous chemical reactions we were looking for a form more or less analogous
to other relations describing physical processes in time. For the i-th step of
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a solid—solid reaction Budnikov and Ginstling published a theoretical rate

equation [11]

do; Ac;

it ~ 5w, (8)
1

where S; denotes the contact surface of reactants participating in the i-th

step, ¢; i1s a motive force expressed by the concentration drop of one of the

reactants, and R; is the resistance of the step. This form has the advantage

that in a strictly consecutive quasi-stationary process the overall rate can be

" easily expressed. However, the interpretation and calculation of R; and AC;

are generally not simple.

The rate equations suggested by us [1] resemble the form of physical
fluxes and current densities (heat, diffusion, etc.) to some extent. The gross
rate of the reaction, W, expresses the transformation rate of the chosen reac-
tant related to unit stoichiometric coefficient (v) for the whole system

W= = [kFaQ. (9)
Q

Here N denotes the amount of transformed reactant (in molar or mass units).
For an explanation of the right-hand side let us use an analogy with heat
conduction. Equation (9) contains k, the commonly used rate constant —
analogous with thermal conductivity, F, a driving force (a function of chemi-
cal potentials, which can be given according to Bradiey [17]) which corre-
sponds to the temperature gradient in heat transfer, and @, called the reac-
tion cross-section, which is defined as proportional to the number of situa-
tions geometrically suitable for the reaction. The rate of the reaction (the
volume derivative of W) is
oW oQ

w == kF 557 kFq (10)
where V is the volume and ¢ is the density of the reaction cross-section.
Since the latter, in general, is not directly proportional to the volume, the
rate of the reaction is not really analogous to a current density (e.g. the den-
sity of the heat flux), but such a form can be reached, relating to the unity
of the reaction cross-section.

w* =?—Hi=kF (11)

aQ
where w* can be called the basic. rate of reaction. In fact, this quantity is
used in catalytic studies, e.g., relating the rate of the reaction to the unity of
catalyst surface.

In the simple phase boundary decomposition mentioned before, @ could
be related to the free surface of the reactant, while in a nucleation step it
would be proportional to the number of existing germ nuclei, or in nuclei
growth it would correspond to the surface of active nuclei etc.

Equations (9—11) do not contradict the rate law of homogeneous reac-
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tions either. In a simple reversible homogeneous process

A '-II,:; mB (12)

where A and B are the reactant and the product. n and m are their stoichio-
metric coefficients, assuming that 1 and m also express the order of the for-
ward and the reverse reaction, the two partial rates are

w' =ka" and  w” =RTOT (13)

where a and b denote the activities of the components. Expressing the net
rate

; }{'_ [).'” B
=RhTa" L — 14
“ . ‘ koa” ) (14
and taking into account that the chemical potentials are
U, =u>+RTIna and  y, =y, +RTInb (19)
we can write
Ht Xp(mis, — nu,/RT) . AG
- = o ‘u5 ‘u(; -=Nexp . (16)
a expl(muy, —nu,/RT) RT
Since k7/k" equals K~' (K is the equilibrium constant)
i AG ~
=RTa" {1 —ex —) (177)
w a ( exp B

In the last equation the term in parentheses is Bradley’s driving force [17]
and the density of the reaction cross-section in ¢" which is really propor-
tional to the number of collisions necessary for the forward reaction. The
reaction cross-section itself equals Va" in this case.

When recommending eqns. (9—11) for the description of heterogenecous
processes, it must be emphasized that they can be valid for one chemical step
of the whole process. In the vast majority of the processes involving one or
more solid reactants — especially under the conditions of thermal analysis
[4—8,12,13] the transport processes cannot be neglected in the description
of the rate, moreover, heat transport of diffusion controlled reactions are
frequently found rate determining (while in homogeneous systems proper
conditions for pure chemical rate control can usually be achieved). There-
fore, a detailed and more accurate description of the processes in question
has to contain chemical rate equations for each step involving chemical
change, and the laws of component and energy transport, together with the
necessary balances, initial and limiting conditions. In addition, the suggested
relations contain several local quantities being subject to change both In
space and time.
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