
Tlwrmochimica Acta. 33 (1979) 259-265 2.5 9 
0 Elsevier Scientific Publishing Company, .4msterdam - Printed in The Netherlands 

DESCRIPTION OF THE RATE OF HETEROGENEOUS 
CHEMICAL REACTIONS 

Gy. POKOL, S. GAL and E. PUNGOR 

Institute for General and :~rzal~tical Chcmist~, Technical LTniccrsity. Budapest (Nungaq) 

(Received 6 December 197s) 

ABSTRACT 

Theoretical studies using the 

da 
- = /;( T)f(a) 
dt 

rate equation for heterogeneous processes - especially those involving at least one solid 
reactant - are reported. Dependence of I: on the sample size is shown in general. Possible 
rate expressions for reversible systems are discussed. 

New forms analogous to physical fluses and current densities are presented for the 
kinetic description of the chemicai step of the processes concerned. 

INTRODUCTION 

In practical kinetic investigations of processes involving at 
tant in the solid state the usual general rate equation is based 
fraction (c) of the sample 
dcu --- 
dt 

= !z(T)f(a) 

least one reac- 
on the reacted 

(1) 

where f denotes a function, t and 12 are the time and the rate coefficient (rate 
constant) which is supposed to be a function of the absolute temperature 
(T). Equation (1) is applied almost exclusively to the decomposition of 
solids being studied most frequently by means of thermal analysis methods. 

In the following, eqn. (1) will be discussed and a new, more general rate 
equation will be presented for the chemical step of heterogeneous processes_ 
The basis of this concept was published by the authors as a conclusion of a 
thermal analysis study on alkaline-earth carbonates [ 11. The concrete results 
of that study [l-3] will not be detailed here, although some characteristics 
of carbonate decompositions are mentioned to illustrate general considera- 
tions. 

THE USE OF THE REACTED FRACTION IN THE RATE EQUATION 

Equation (1) resembles the rate law of homogeneous reactions, containing 
the reacted fraction instead of concentrations. Reviews and monographs in 



this field often cont,ain warnings about t,he limitations of this analogy [4-S], 
pointing out. that in reactions .3f solids the f(a) functions express rather the 
effect. of geomctm and transport processes (heat conduction, diffusion) than 
the effect of concentrations. In fact, the concentrat.ion itself can be different 
in various p‘art,s of the system, moreover, it.s clm~ge is not continuous at a 
certain place, if reactant.s and products form sep,arat.e phases. Thus, the 
react.& fraction is an average value for t.he whole system, which can be very 
easily calculated from mcasurablc quant.it.ies (mass of the sample, evolved or 
consumed energy), but its relation to local quantities (like concent.ration) is 
not simple. Xaturally. any quantity havin g an unambiguous (more practi- 
cally, linear) rtlat.ionship with the amount of reactants ahd pr0duct.s may be 
used in rate> equat.ions, but. this may change the characteristics and the mean- 
ing of the other variables which in eqn. (1) are summarized in the rate coeffi- 
cient k. For example, one could use eqn. (1) to describe a homogeneous 
reaction having the 

rate law. where c is the concentration of the rcact.ant with the value cl, at. t.he 
heginning of the process and zero at the end, and 12 is the react.ion order. 
Even in the case of constant volume the rate coefficient in eqn. (I j would 
become a function of two independent. variables. except. 12 = 1 

f: = I:,.( T)C$ - * (3) 

after replacing c with c,(l - ct.). 

TIIE EFFECT OF THE S_AlIPLE SIZE AND THE REVERSE REACTION OX KINETIC 
P-AR_-\>IETERS CXLCUL_ATED FROSI EQN. (1) 

While for homogeneous reactions a law similar to eqn. (2) describes the 
react.ion rat.e, i.e. the time derivative of the amount. of material transformed 
in the unity of volume, regardless of the entire volume of the system, 
provided the temperakre, the initkal concent.rations and other intensive 
quantities are t.he same, eqn. (1) does not have t.his inv,ariancy in general if 
applied t.o a process with a solid reactant., when the chemical change is going 
on at a phase boundary of changin g confign-ation and/or size. On t.his basis, 
in t.heoreticA consider&ions start,ing from some kind of physical model for 
the mechanism of the process, the rate equations usually contain the number 
of particles or sit.es capable of reaction or this number related t.0 the unity of 
surface [9-l 11. 

However, once turning to espressions applicable in the calculation of 
kinet.ic parameters from measurements, N is introduced wit.hout real discus- 
sion_ Ot.her works simply st‘art wit.11 eqn. (1) or equivalent. [ 12,131, or use 
rate equations based on c\’ and the amount of :he reactant within one chapter 
[HI_ 

Although most of the aut.hors cited above do mention that the reaction 
rate in a heterogeneous process depends on a series of variables beyond those 



iilcluded esplicitl>- in eqn. (I). none of them point out that the rate’ coeffi- 
cicnt. will be dependent upon the size of the sample in all but one c’aw. ;\s thr> 
most simple example one can take 311 irreversible decomposition of a solid 
where the velocity of the advancement of t.he reacting surface can be 
assu~necl t.o depend on the temperat.ure only. Expressing f(a ) in this case for 
spherical samples yields 

Comparing two spheres of different init.ial radii thcl rate constant. must ob- 
viously be inversely proport.ional to the initkal radius. 

If t.he reaction t.akes plact: on the chan+ 1 * : g surface of the solid reactant, 
t.he only typo of system whose k in eqn. (1) will be inclcpcndcnt of sample 
size. consists of identical particles and involves 3 process advancing uni- 
formly in each particle (i.e. at any time the reacted fraction of all the p,ar- 
titles is the same). This case is quite rare, even ;>owdcr samples most oft.en 
behaving similarly to a single piece; there is a reaction zone moving inwarc1. as 
shown for calcium cxarbonate by Gnlkqher and Johnson [ 151 and our 
previous work [ 11. 

Using the Arrhenius equation for the rate constant 

i5) 

where _-I and -1H’ are the prc-esponential factor and the activation enthalpy, 
respectively, the p‘articular effect of the sample size discussed above xvi11 
appear in the ..I value. Within one study this problem can remain concealed, 
since most. investigators tend to use similar samples in one series of mea- 
suremen& as possible. However, it is certainly one of t,he causes making the 
compCarison of resu1t.s from different laboratories difficult and questionable. 

X more mrefui way of kinet.ic investigation was suggest.4 by Ozax.va [ 16]_ 
He asserted t.hat the rate should be expressed basically in terms of a “strut- 
tural quantit,y” , s. Assuming the rate constant given by the :\rrhenius rela- 
tion, he wrote siniikarly to eqn. (1) 

Here he emphasised that the conversion 
from some property of the sample is not, 
general 

(6) 

(being the same as Q) calculat.ed 
necessarily equal to s, rather, in 

and that t.he f(s) function has to be taken into account in pract.ical comput.a- 
.tions. -4s an example he showed the actual f(s) for polymer degradation and 
evaporation with random scission of bonds between the monomer units. 
However, the structural qu2mtit.y on Ozawa‘s worli still has characteristics 
of t.he reacted fraction (it changes from 1 to 0) that may well be satisfactory 
in the case of some polymer degradations, but would show the same size 
effects in heterogeneous chemical reactions as eqn. (1). 
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It must be emphasized that the size has other, often greater effects on the 
rate of the overall process, influencing the conditions of the transport 
processes in the system, as discussed in detail most recently by Garn [ 81. 

Whenever the reverse reaction can take place in a process, the overall rate 
will depend on the concentrations of the products, which in the decompo- 
sition of solids can be characterized by the partial pressure of the evolved 
gas. Bradley [17], starting from an assumption of Polanyi and Wigner [18], 
using the t.erms of the transition state theory, derived a factor to be included 
in the rate equation for a solid--solid process, which can also compIete eqn. 
(I) 

g = h(T)f(a) (1 - esp ,“p) 

where AG is the Gibbs free energy difference in the process. Although 
(7) had been suggested for general use in the evaluation of thermoanalytical 
curves by Sestak and Berggren [ 51 and Satava [12], it has been usually 
ignored, assuming th-e process to be “very far” from equilibrium. One of the 
few exceptions is Jiintgen and Van Heek’s work on calcium carbonate 
decomposition [ 191. In this case the driving force factor equals (1 -p/g,), p 
and pe being the actual and the equilibrium pressure of the product gas. 

Rouquerol [13] and Wist [20] without detailed discussion introduced the 
difference of the equilibrium and the actual pressure as a factor into the 
right-hand side of eqn. (1). Their factor differs from that mentioned above 
[ 191 in a pe multiplier which is temperature dependent. 

Before proceeding to the suggested new form of rate equation, let us 
briefly mention another way of taking the sample size and product gas pres- 
sure into account. It is possible to use eqn. (1) in the investigation calculat- 
ing the apparent values of kinetic parameters (A, E and the f function) and 
study the dependence of these parameters on sample size and the pressure as 
suggested by several authors [ 4-8]_ In a quite detailed study on calcium car- 
bonate thermal decomposition Gallagher and Johnson 1151 followed this 
way, describing the relationship of the initial mass of sample and the 
Arrhenius parameters with empirical formulae and characterizing the effect 
of carbon dioside pressure on the apparent activation enthalpy. Several years 
before, Berlin and Robinson [21] derived an expression of the relationship 
between the initial mass and the temperature at which the reaction just ter- 
minates in constant heating rate runs. 

In spite of the considerations and promising suggestions mentioned above, 
eqn. (1) is being applied almost exclusively in the kinetic evaluation of ther- 
moanalytical curves. 

DISCUSSION OF THE PROPOSED NEW FORM OF RATE EQUATION -’ 

Whrn attempting to give a more general expression of the rate of heterog- 
eneous chemical reactions we were looking for a form more or less analogous 
to other relations describing physical processes in time. For the i-th step of 
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a solid--solid reaction Budnikov and Ginst.ling published a theoretical rate 
equation [ 1 l] 

(8) 

where Si denotes the contact surface of reactants participating in the i-th 
step, ci is a motive force expressed by the concentration drop of one of the 
reactants, and Ri is the resistance of the step. This form has the advantage 
t.hat in a strictly consecutive quasi-stationary process the overall rate can be 
easily espressed. However, the interpretation and calculation of Ri and ACi 
are generally not simple. 

The rate equations suggested by us [ 11 resemble the form of physical 
fluses and current densities (heat, diffusion, etc.) to some estent. The gross 
rate of the reaction, W, espresses the transformation rate of the chosen reac- 
tant related to unit stoichiometric coefficient (v) for the whole system 

(9) 

Here N denot.es the amount of transformed reactant. (in molar or mass units). 
For an explanation of the right-hand side let us use an analogy with heat 
conduction. Equation (9) contains K, the commonly used rate constant - 
analogous with thermal conductivity, F, a driving force (a function of chemi- 
cal potentials. which can be given according to Bradley [ 171) which corre- 
sponds to the temperature gradient in heat transfer, and Q, called the reac- 
tion cross-section, which is defined as proportional to the number of situa- 
tions geometrically suitable for the reaction_ The rate of the reaction (the 
volume derivative of W) is 

where V is the volume and 9 is the density of the reaction cross-section. 
Since the latter, in general, is not directly proportional to the volume, the 
rate of the reaction is not really analogous to a current density (e-g_ the den- 
sity of the heat flux), but such a form can be reached, relating to the unity 
of the reaction cross-section. 

(11) 

where w* can be called the basic. rate of reaction. In fact, this quantity is 
used in catalytic studies, e.g., relating the rate of the reaction to the unity of 
catalyst surface. 

In the simple phase boundary decomposition mentioned before, Q could 
be related to the free surface of the reactant, while in a nucleation step it 
would be proportiona! to the number of existing germ nuclei, or in nuclei 
growth it would correspond to the surface of active nuclei etc. 

Equations (9-11) do not contradict the rate law of homogeneous reac- 



n-here ;I and B are the rcact,ant. and t,he product,. IZ and 
metric coefficients, assuming that. )7 and n2 also express 
ward and t.lic rcverst‘ rcact.ion, the t.wo partial rates arr 

172 arc their stoichio- 
the order of the for- 

where a and b denote t.he activities of the components. Esprtssing the net. 
rate 

(l-l! 

and taking into account that the chc>mical potentials arc 

/A: = ,uf; + RT In (I XIld p,, = /.J; + RT 111 b 

n-t’ can witc 

(15) 

In t.he last. equation the term in parentheses is Bradley’s driving force [ 171 
and the density of the reaction cross-section in cl” which is really propor- 
tional to the number of collisions necessary for the forward reaction. The 
reaction cross-sect.ion itself equals VQ” in this case. 

\\%en recommending eqns. (9-11) for t.he description of hcterogerwous 
processes. it must. be emphasized that they can be valid for one chemical step 
of the whole process. In the vast majority of the processes involving one or 
more solid reactant.s - especially under the conditions of thermal analysis 
[-I-S,.i2,13] t.ile transport processes cannot be neglected in the description 
of the rate. moreover, heat t.ransport. of diffusion controlled reactions are 
frequent.ly found rate determinin g (while in homogeneous systems proper 
conditions for pure chemic,al rat.e control can usually be achieved). There- 
fore, a detailed nnd more accurat.e description of the processes in question 
has to contain chemical rate equations for each st.ep involving chemical 
change. and the laws ‘of component and ener.gy transport, toget.her with t.he 
necessary bala1;ces. initial and limiting conditions. In addition, the suggested 
relations contain several local quantities bein g subject to change both in 
space and time. 
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